simulation

Simulation Springs

PHET har en interessant og lærerikt ny simulering Springs som handler om eksperimentering med vekt (mass) og fjær som kan bli brukt på mellomtrinnet og på ungdomsskolen. Simuleringen er lett i bruk og gjør elevene i stand til å utforske og eksperimentere med vekt/mass og fjær(vekt). Programmet har tre nivåer: Spring, Bounce og Lab.

Første utfordring er å oppdage hva ‘spring strength‘ betyr og hvordan den påvirker ulike faktorer. Neste oppgaven er å finne fram hva vekten (mass) er til de ulike, ukjente vekter. Legg merke til linjalen som er tilgjengelig. Ber elevene om å prøve ut alle alternativer med hensyn til knapper og funksjoner. Mange elever overser noen og de kommer godt med neste nivået.

Bounce
En ekstra funksjoner er tilgjengelig her. Blant annet markeringer for ‘resting position‘ and ‘movable line‘ og en stoppe klokke/kronometer. Oppgaven er å estimere (tippe) vekten til de ulike, ukjente vekter. Hvordan kan du finne fram resultatet ved bruk av stoppeklokke? Hvordan påvirker vekten fjærens bevegelse?  Hvordan påvirker fjærens styrke sprettbevegelse?

Lab
Siste nivået egner seg bedre til elever på ungdomsskole eller videregående. Vokabular og begreper som ‘velocity’, ‘acceleration‘ og ‘period trace‘ er rimelig kompleks.  Det er en utfordring å forklare hvordan ulike verdier er relatert til hverandre, og å beskrive årsak  og virkning, når man bruker disse konseptene.

Flere PHET simulations. Se også Chemistry: pH scales and acidity Balancing Act, The moving man, Energy skate park, og Density and Buoyancy.

 Kjøp  gratis
 Egnet for  datamaskin, nettbrett
 Krever  nettleser (programmet bruker HTML5)

Surhet og pH skala

DiScoro skriver om inquiry-basert læring, om nettressurser som kan bli brukt i undervisningen, og om hvordan en kan framheve høyere-ordens kunnskaper. Vi har fokus på realfag og bruk av teknologi.

PHET simuleringen pH Skala gjør det mulig at elevene eksperimenterer med sure og basiske væsker.

Bemerk at pH skala og surhet er komplekse begreper for elevene særlig for på barneskole. En lavere pH (surhetsgrad) betyr surere og en høyere pH (surhetsgrad) betyr mindre sur, eller mer basisk. (På engelsk ‘acid’ og ‘basic’). Nøytral er indikert ved pH-verdien 7,0.

Allikevel kan simuleringen hjelpe elevene til å bli kjent med konseptet. Simuleringen kan bli brukt på 6. – 8. trinn. Avhengig av hvor mye tid du vil bruke kan du i tillegg oppmuntre elevene å eksperimentere og utforske surhet og pH verdier i væsker og bruk derav i daglig livet.

Screencast simulering pH skala

Forslag til oppgaver og eksperimenter:

  1. Sjekk ut de forskjellige væskene som er tilgjengelige i programmet.
    Ranger væskene fra de mest sure til de minst sure før du begynner å måle. Skriv ned estimeringen din.
  2. Mål pH verdiene av væskene og skriv ned resultatene (i en tabel).
    Hvilke væsker er nærmest pH 7,0?
    Hva betyr det hvis pH verdien er nær 7,0?
  3. Bruk vann til å fortynne væskene og prøv å lage et væske som er nærmest 7,0.
    Skriv ned hva du har gjort for å nå resultatet.
  4. Kan du fortynne et basisk væske ved bruk av vann slik at pH verdien blir lavere enn 7,0?
    Kan du fortynne et surt væske ved bruk av vann slik at pH verdien blir høyere enn 7,0?
    Forsøk å forklare resultatet.

Tenk utenfor simuleringen.

  1. Hvordan kan du endre en sur væske i en basisk væske? Så hvordan kan du for eks. endre pH verdien av et væske fra 5,0 til 7,5?
  2. a. Kroppen din fungerer best hvis pH verdien er nøytral. Hvordan klarer kroppen din dette?
    b. Med kunnskap av pH verdien til kroppen, hvordan kan du støtte kroppen din for å forbli sunn?

I tillegg av simuleringen kan du bruke pH papir til å måle surheten av væsker. Det blir enda mer interessant hvis væskene kan smakes. Elevene kan beskrive hvordan de opplever smaker. Bruk for eks. brus, fruit jus, te, melk, kaffe, vann. Ekte-eksperimentet kan du utvide ved å nøytralisere sure/basiske væsker. For eks. ved å tilsette bakepulver (bikarbonat) til et sur væske.

 Kjøp  gratis
 Egnet for  datamaskin, nettbrett
 Krever  nettleser (bruker HTML5)

Krefter og bevegelse

Vi har skrevet flere blogger om simuleringer av PHET (by Colorado University). Nå blir flere simuleringer oversatt til Norsk. I tillegg blir programmene oversatt til HTML5. Det betyr at du trenger ikke noe lengre JAVA til bruk av PHET simuleringer.
Vi presenterer simuleringen Krefter og Bevegelse.

Elevene kan eksperimentere med simuleringer før eller etter du har introdusert konseptet. De fleste elevene vil ikke utforske i dybde og sette hypoteser sjøl. De vil ofte oppdage hva som skjer men ikke hvorfor det skjer slikt. Det behøver veiledning av læreren. Først og fremst hjelper det hvis to elevene sitter sammen med en datamaskin/nettbrett.
I tillegg må du legge til rette spørsmål, oppgaver som oppfordrer elevene til å utforske og tenke videre. Elevene bør utvikle sin ordforråd både muntlig og skriftlig i naturfagenes språk. Elevene må lære til å uttrykke seg tydelig når de forklarer fenomener.
En kan gjøre det er i klassesamtaler, eller med veiledning mens elevene jobber. Når klassen er stor er det lettere med et oppgave ark som ber om mer spesifikk utforsking, refleksjon og formulering. Nedenfor noen eksempler av oppgaver.

Oppgave_1: Hvis en av de to mennesker lar tauet slippe i ett eller to sekund og tar det igjen. Hva skjer med tung vogn? Forklar hvorfor?

Oppgave_1: Hvis en av de to mennesker lar tauet slippe i ett eller to sekund og tar det igjen. Hva skjer med tung vogn? Forklar hvorfor?


Klikk på bildet for å få fram spørsmålet.

Se også på Balancing Act, The Moving ManDensity and Buoyancy

 Kjøp  gratis
 Egnet for  datamaskin, nettbrett
 Krever  nettleser

Simulering – Mangfold

DiScoro skriver om inquiry-basert læring, om nettressurser som kan bli brukt i undervisningen, og om hvordan en kan framheve høyere-ordens kunnskaper. Vi har fokus på realfag og bruk av teknologi.

Bloggen handler om to simuleringer basert på samme konsept nemlig Thomas Schelling’s Model of Segregation. Modellen forsøker å forklare sosiale fenomener. Den viser for eksempel hvor vanskelig det er å bygge og opprettholde et mangfoldig lokalsamfunn. Schelling forsøker å forklare når og hvorfor ghetto forming skjer og under hvilke forhold det kan forebygges eller

Forskeren Schelling prøver å forklare når og hvorfor ghettoforming  skjer og under hvilke forhold dette kan forebygges eller til og med reverseres. Med andre ord har folk med felles identiteter en tendens til å samle seg sammen. I de fleste klasser danner gutter og jenter sine egne grupper.

Første simuleringen av by Frank McCown ble nevnt Schelling’s Model of Segregation. Andre simuleringen av Vi Hart og Nicky Case ble nevt Parable of the Polygons. De to simuleringer har ulike brukergrensesnitt. Begge simuleringer bruker to grupper. Den første simuleringen har fire variabler (og en intervalltimer), mens Parable of the Polygons gir flere ulike simuleringer for forskjellige variabler.

Simuleringen av Frank McCown finner du når du ruller ned på nettsiden. Simuleringen genererer en rekke spørsmål som kan utforskes, for eksempel:

  • Når forblir mangfoldige lokalsamfunn divers?
  • Når og hvorfor foregår clustering selv om folk er relativt tolerante og åpne?
  • Kan segregerte lokalsamfunn være tolerante?
  • Under hvilke forhold skjer segregering og hvorfor?

Simuleringen Parable of the Polygons inneholder en gruppe simuleringer inneholder en gruppe simuleringer og bruker stillas til å utforske konseptet. I motsetning til Mc Cowns simulering visualiserer Parable of the Polygons om folk er lykkelige eller ikke. I tillegg finnes det en siste simulering har hvor kan brukeren flytte en person og se hva som skjer. Den siste simuleringen er et spesielt interessant.

 

 

Parable of the Polygons kan bli brukt som inspirasjon til læreren. could be used as inspiration for the teacher. Simuleringen kan også bli brukt med elever men etter vår mening vil graden av stillas begrense nysgjerrighet, tenkning og resonnement av elevene selv.

Som lærere må vi være forsiktige med hvordan vi introduserer simuleringen og hvordan vi diskuterer problemene. Minoritetsgrupper i klassen kan enkelt føles ubehagelig. Det er opp til læreren å velge konteksten og ordforrådet som passer klassen. Som du kanskje har observert har vi forsøkt å bruke ordet mangfold i stedet for segregering.

I tillegg kan simuleringene brukes av beslutningstakere, men også av studenter i forhold til religion, geografi / demografi. Det har vært kjent i kjemi at separate molekyler og molekyler i små mengder reagerer annerledes enn i masse. Det samme kan observeres hos mennesker. Individuelle mennesker kan være tolerante og åpne, men i en stor gruppe vil de likevel bli klynget under visse forhold.

 

Gossip simulation

Gossip Simulation, eller sladder simuleringen, viser hvor raskt sladder sprer seg mellom en gruppe av hundre mennesker. Først noe om brukergrensesnitt. Simuleringen gjør det mulig å endre antall mennesker som begynner å spre en melding, informasjon. Variabelen er number of initial processes (= number of people, antall mennesker). I tillegg har simuleringen en variabel som heter message loss. Message loss kan ha ulike grunn. Det kan for eksempel være prosent av mennesker som ikke sprer informasjonen (sladder).

Etter at elevene har blitt kjent litt med simuleringen kan du som lærer diskutere med elevene hva slags (andre) grunn kunne ligge bak variabelen message loss. Verdien vil endre når meldingen er en hemmelighet og mennesker blir spurt om å holde hemmeligheten. Og verdien vil være ulike når meldingen inneholder interessant men ufarlig informasjon. Verdien av message loss vil også variere i ulike grupper. Folk kan være opptatt, syk, bortreist og derfor kommuniserer de ikke med andre i gruppen i en stund. Mange faktorer kan påvirke verdien av message loss.

screencast Gossip Simulation

Elevene kan utforske simuleringen med oppgaver og spørsmål. Elevene kan bli spurt om teknikk/matematikk for eksempel:

  • Hvor mange runder tar det før alle har mottatt meldingen ved x processes og en message loss på y?
  • Hvorfor er resulatet ikke de samme når du kjører simuleringen flere ganger ved like verdier for de to variabelene?
  • Kan dere beregne/estimere hvor mange runder det tar? Hvordan har dere gjort det?
  • Hvordan kunne dere ekstrapolere simuleringen mot tusen mennesker eller mot hele befolkningen?

Simuleringen kan brukes til å diskutere gruppeadferd i virkeligheten og på sosiale medier. Også temaer knyttet til sikkerhetssystemer basert på kommunikasjon kan diskuteres. Advarsler om motgående katastrofer (tyfon, flom, jordskjelv, forurensning osv.) og meldinger knyttet til evakueringer må nå så mange mennesker på kort tid.

Noen spørsmål til:

  • Tatt i betraktning forksjellige scenarier hva kunne variabelen rounds representere? (minutter, timer, dager, uker….)
  • Når er rounds mer sannsynlige å være dager enn minutter?
  • Hvis du vil forhindre at en melding spres på Facebook, hvordan kan du forhindre eller stoppe dette?
  • Hva mer kan denne modellen representere? (spredning av advarsel, spredning av en sykdom, markedsføring av et produkt, ….)
  • Kan du komme med et bedre navn for simuleringen?
  • Hvis politiet ønsker å spre en advarsel så fort som mulig, hvordan kunne de få det til?
  • På hvilken måte kan du bruke modellen til å visualisere en sykdom med tiltak slik at den vil ikke spre seg så fort?

Foreslått aldersgruppe: trinn 5-9

  Kjøp   gratis
  Egnet til   datamaskin, iPad
  Krever    nettleser